GGSIPU mathmatics 2008

1. Let in and be two equal vectors incsined at an angle θ, then a $\sin \frac{\theta}{2}$ is equal to
a $\frac{|3-i j|}{2}-\mid$
b $\frac{1 i+1 /}{1}$
c $|\overrightarrow{\boldsymbol{i}}-|\overrightarrow{\boldsymbol{l}}|$
d $|\vec{i}+|\vec{j}|$
2. $\int \frac{d x}{x^{2}+4 x+13}$ is equal to
a Idec $\left.x^{2}+4 x+13\right)+c$
b $\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)+\mathrm{c}$
c $\log 2 x 2 x+4)+$
d $\frac{2 x+4}{\left.\left.x^{2}+4 x+13\right)\right)^{2}}+\mathrm{c}$
3. The general solution $y^{2} d x+x^{2}-x y+y^{2} d y=0$ is
$\left.a \tan ^{-1} \frac{x}{y} \right\rvert\, \cdot \log y+c=0$
b $\left.2 \tan ^{-1} \frac{x}{y}\right)+\log x+c=0$
$c \log y++\sqrt{x^{2}+y^{2}}+\log y+c=0$
(d) $\sinh ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
4. $\left.\left.\int_{0}^{\pi / 4} \cos x-\sin x\right) d x+\int_{\pi / 4}^{5 \pi / 4} \sin x-\cos x\right) d x+\int_{2 \pi}^{\pi / 4}(\cos x-\sin x) \mathrm{d} x$ is equal rto
a $\sqrt{2}-2$
b $2 \sqrt{2}-2$
c $3 \sqrt{2}-2$ d $4 \sqrt{2}-2$
5. Out of 40 consecutive natural numbers, two are chosen at random. Probability that the sum of the number is odd,is
a $\frac{14}{29} \quad$ b $\quad \frac{20}{39}$
C $\frac{1}{2}$
d None octhee
6. Equation of tengents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, which are perpendicular to the line $3 x+4 y=7$, are
a $4 x-3 y= \pm \sqrt{20}$
b $4 x-3 y= \pm \sqrt{\mathbf{1 2}}$
c $4 x \leqslant 3 y=\sqrt{2}$
d $4.4-3 y=$ 北 1
 ［该］持］is equal to
a $4 \sqrt{3}$
b $6 \sqrt{3}$
c $12 \sqrt{3}$
（d $18 \sqrt{3}$

8．The solution of the equation $\frac{d^{2} y}{d x^{2}}=\mathrm{e}^{-2 \mathrm{x}}$ is
a $y==\frac{1}{4} \mathrm{e}^{-2 x}+\frac{c x}{2}+d$
$b y=\frac{1}{4} e^{-2 x}+c x+d$
c $y=\frac{1}{4} e^{-2 x}+c x^{2}+d$
d）$y=\frac{1}{4} e^{-2 x}+c x^{3}+d$
9．The value of $\int_{2}^{3} \frac{x+1}{x^{2 /}(x-1)} d x$ is
a $\log \frac{16}{9}+\frac{1}{6}$
$b \log \frac{16}{9}-\frac{1}{6}$
c $2 \log 2-\frac{1}{6}$
d $\log \frac{4}{3}-\frac{1}{6}$

10．The length of the chord of the parabola $x^{2}=4 y$ passing through the vertex and having slope cot α is
a $4 \cos \alpha \operatorname{cosec}^{2} \alpha$
b $4 \tan \alpha \sec \alpha$
c $4 \sin \alpha \sec ^{2} \alpha$
d None of these

11．The records of a hospital show that 10% of the cases of a certain disease，then the probability that only three will die，is
a 8748×10^{-5}
b 1458×10^{-5}
C 1458×10^{-6}
d 41×10^{-6}

12．From the point $P 16,7$ tangents $P Q$ and $P R$ are drawn to the circle $x^{2}+y^{2}-2 x-4 y-20=0$ ．If c be the centre of the circle，then area of quadrilateral PQCR is
a 450 sq unit
b $\quad 15$ sq unit
c 50 sq unit
d 75 sq unit
13. If $\tan x=\frac{b}{a}$, then the value of $a \cos 2 x+b \sin 2 x$ is
a a
b a -b
c $a+b$
d b
14. In a triangle $A B C$, right angled at C, the value of $\cot A+\cot B$ is
a $\frac{c^{2}}{a b}$
b a-at
c $\frac{a^{2}}{b c}$
d $\frac{b^{2}}{a c}$
16. If α, β are roots of the equation $1 \mathbf{x}^{2}+\mathbf{m x}+\mathbf{n}=0$, then the equation whose roots are $\alpha^{3} \beta$ and $\alpha \beta^{3}$,is
a $\left.\right|^{4} x^{2}-n \mid m^{2}-2 n l x+n^{4}=0$
b $\left.\right|^{4} x^{2}+n l m^{2}-2 n l x+n^{4}=0$
c $\left.\right|^{4} x^{2}+n\left|m{ }^{2}-2 n\right| x-n^{4}=0$
d $\left.\right|^{4} x^{2}-n \mid m{ }^{2}-2 n l x+n^{4}=0$
17. The value of $2^{1 / 4} \cdot 4^{1 / 8} \cdot 8^{1 / 16} \cdot 16^{1 / 32} \ldots$
a $3 / 2$
b $5 / 2$
c 2
d 1
18. $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]\left[\begin{array}{lll}2 & 1 & -1\end{array}\right]$ is equal to
a $\left[\begin{array}{c}2 \\ -1 \\ -2\end{array}\right]$
b $\left[\begin{array}{ccc}2 & -1 & -1 \\ -2 & -1 & 1 \\ 4 & 2 & -2\end{array}\right]$
(c) [-1] d not defined
19. $\lim _{x \rightarrow \infty} \frac{(2 x-3)(3 x-4)}{(4 x-5)(5 x-6)}$ is equal to
a $\frac{1}{10} \quad$ b 00
C $\frac{1}{5} \quad$ (c $\frac{3}{10}$
20. Function $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{cc}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.\right.$ is a continuous function
a for $\mathrm{x}=2$ only
b for all real values of \mathbf{x} such that $\mathbf{x} \neq \mathbf{2}$
c for all real values of x
d for all integgral values of x only
21. Differential coefficient of $\sqrt{\sec \sqrt{x}}$ is
a $\frac{1}{\overline{4} \sqrt{x}} \sec \sqrt{x} \sin \sqrt{x}$
b $\quad \frac{1}{4 \cdot \sqrt{x}}(\text { ec } \sqrt{x})^{3 / 2} . \sin \sqrt{x}$
c $\frac{1}{2} \sqrt{x} \sec \sqrt{\bar{x}} \sin \sqrt{\bar{x}}$
d $\frac{1}{2} \sqrt{ } \bar{x} \sec \sqrt{ } \bar{x}^{3 / 2} \cdot \sin \sqrt{ } \bar{x}$
22. The function $x^{5}-5 x^{4}+5 x-1$ is
a neither maximum nor minimum at $\mathbf{x}=\mathbf{0}$
b maximum at $\mathbf{x}=\mathbf{0}$
c maximum at $\mathrm{x}=1$ and minimum at $\mathrm{x}=3$
(d) minimmm at $\mathrm{x}=0$
23. If $\mathrm{x}=\mathrm{y} \sqrt{1-y^{2}}$, then $\frac{d y}{d x}$ is equal to
$a \mathbf{x x} ; \quad \frac{\sqrt{1-y^{2}}}{1+2 y^{2}}$
c $\frac{\sqrt{1-y^{2}}}{1-2 y^{2}} \quad$ d 0
24. If the planes $x+2 y+k z=0$ and $2 x+y-2 z=0$, are at the right angles, then the value of k is
a !
b -2
C $\frac{1}{2}$
d $-\frac{1}{2}$
25. The ratio in which the line joining $2,4,5,3,5,-4$ is divided by the $y z$ plane is
a 2:3
b 3:2
C - 2:3
d 4: -3
26. If the lines $3 x+4 y+1=0,5 x+\lambda y+3=0$ and $2 x+y-1=0$ are concurrent, then λ is equal to
$\begin{array}{ll}\text { a } & -8\end{array}$
(b) $8 \quad \mathrm{c}$
4 d -4
27. The value of $\int_{0}^{1} \frac{x^{4}+1}{x^{2}+1} d x$ is
a $\quad \frac{1}{6} 3-4 \pi$
b $\quad \frac{1}{6} 3 \pi+4$
c $\frac{1}{6} 3+4 \pi$
d $\quad \frac{1}{6} 3 \pi-4$
28. The solution of the differential equation

$$
\frac{d y}{d x}=\mathrm{y} \tan \mathrm{x}-2 \sin \mathrm{x} \text {, is }
$$

a $\quad Y \sin x=c+\sin 2 x$
b $\quad Y \cos x=c+\frac{1}{2} \sin 2 x$
c $\quad Y \cos x=c-\sin 2 x$
d $Y \cos x=c+\frac{1}{2} \cos 2 x$
29. The value of $1-\log 2+\frac{\log 2)^{2}}{2!}-\frac{(\log 2)^{3}}{3!}+\ldots$. Is
a $\operatorname{Iclog} 3 \quad b \quad \log 2$
c $\frac{1}{2}$ d None of thhse
30. The maximum value of $f\left(x=\frac{x}{4+x+x^{2}}\right.$ on $[-1,1]$ is
a $\frac{1}{3}$
b $-\frac{1}{4}$
C $\frac{1}{5}$
d $\frac{1}{6}$
31. If the redius of a circle be increasing at auniform rate of $2 \mathrm{~cm} / \mathrm{s}$. The area of increasing of area of circle, at the instant when the redius is 20 cm , is
a $70 \pi \mathrm{~cm}^{2} / \mathrm{s}$
b $70 \mathrm{~cm}^{2} / \mathrm{s}$
c $80 \pi \mathrm{~cm}^{2} / \mathrm{s}$
d $80 \mathrm{~cm}^{2} / \mathrm{s}$
32. If $P A=P B=3 x$ and $P A$ (. $\cap B=P A^{\prime} \cap B^{\prime}=\frac{1}{3}$, then x is equal to
a $\begin{array}{lll}\frac{1}{2} & \text { b } & \frac{1}{3}\end{array}$
C $\frac{1}{4} \quad$ d $\frac{1}{6}$
33. The focus of the parabola $y^{2}-x-2 y+2=0$ is
a $\left(\frac{1}{4}, 0\right.$
b 1, (
C $\frac{5}{4}, 1 \quad$ d $\quad \frac{3}{4}, \frac{5}{2}$
34. The equation of normal at the point 0,3 of the ellipse $9 x^{2}+5 y^{2}=45$ is
a x-axis
b y -axis
c $y+3=0$
d $y \quad-3=0$
35. The equation of the tengent parallel to $y-x+5=0$ drawn to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ is
a $x-y+1=0$
b $x-y+2=0$
c. $x+y-1=0$
d) $+1+y \div 2=0$
36. Let the functions f, g, h are defined from the set of real numbers R to R such that $f\left(x=x^{2}-1\right.$, $g x$ $=\sqrt{\left(x^{2}+1\right.} \quad$ and $\mathrm{hx}=\left\{\begin{array}{ll}0, & \text { if } x<0 \\ x, & \text { if } x \geq 0\end{array}\right.$,

Then hofog x is defined by

a	X
b	X^{2}
c	0
d	None of these

37. The angle of elevation of the sum,If the length of the shadow of a tower is $\sqrt{\mathbf{3}}$ times the height of the pole,is
a $150{ }^{\circ}$
b $30{ }^{\circ}$
c 60°
d $\mathbf{4 5}{ }^{\circ}$
38. If $\sin \mathrm{A}=\mathrm{n} \sin \mathrm{B}$, then $\frac{n-1}{n+1} \tan \frac{A+B}{2}$ is equal to
$\mathrm{a} \sin \frac{A-B}{2} \quad \mathrm{~b} \tan \frac{A-B}{2}$
$\mathrm{C} \cot \frac{A-B}{2}$
d None of these
39. $3 \tan ^{-1} a$ is equal to
a $\tan ^{-1} \frac{3 a+a^{3}}{1+3 a^{2}}$
b $\tan ^{-1} \frac{3 a-a^{3}}{1+3 a^{2}}$
c $\tan ^{-1} \frac{3 a+a^{3}}{1-3 a^{2}}$
d $\tan ^{-1} \frac{3 a-a^{3}}{1-3 a^{2}}$
40. In which quadrant of the complex plane , the point $\frac{1+2 i}{1-i}$ lies ?
a Fourth b Fir st
c Second d Third
41. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $p x^{2}+q x+r=0$, then
a $p^{2}+q^{2}-2 p r=0$
b $p^{2}-q^{2}+2 p r=0$
c $p^{2}-q^{2}-2 p r=0$
d $p^{2}+q^{2}+2 p r=0$
42. If a, b, c are in the $G P$, then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, if $\frac{d}{a}$ $, \frac{e}{b}, \frac{f}{c}$ are in
a AP
b GP
c Hp d None of toiese
43. In the expension of $2 x^{2}-\frac{1}{x}{ }^{12}$, the term independent of x is
a $8^{\text {th }}$
b $7^{\text {th }}$
c $9^{\text {th }}$
d $10{ }^{\text {th }}$
44. The general value of θ in the equation $\cos \theta=\frac{1}{\sqrt{2}}, \tan \theta=-1$ is
a $2 \mathbf{n} \pi \pm \frac{\pi}{6}, \mathbf{n} \in \mathbf{I}$
b $\quad 2 \mathrm{n} \pi+\frac{7 \pi}{6}, \mathrm{n} \in \mathrm{I}$
c $n \pi+\mathbf{1}^{n} \frac{\pi}{3}, n \in I$
d $n \pi+-1 \frac{n}{4}, n \in I$
45. If $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$, then A^{-1} is equal to
a $\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]$
b $\left[\begin{array}{cc}5 / / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]$
c $\left[\begin{array}{ll}-5 / 11 & -2 / 11 \\ -3 / 11 & -1 / 11\end{array}\right]$
d $\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]$
46. The value of $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+b x+4}{x^{2}+a x+5}\right)$ is
a $\frac{b}{a}$
b 0
c $: 1$
(d) $\frac{4}{5}$
47. Let $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{l}\frac{\sin \pi x}{5 x} \quad x \neq 0 \\ k, \quad x=0\end{array}\right.\right.$ if $\mathrm{f}(\mathrm{x})$ is the continuous at $\mathrm{x}=0$, then k is equal to
a $\frac{\pi}{5}$
b $\frac{5}{\pi}$
C 1
d 0
48. If θ be the angle between the vectors $\hat{i}=2 \hat{i}+2 \hat{j}-\widehat{k}$ and $\vec{i}=\mathbf{6} \hat{\boldsymbol{i}}-3 \hat{j}+2 \widehat{k}$, then
a $\quad \cos \theta=\frac{4}{21}$
b $\cos \theta=\frac{3}{19}$
c $\cos \theta=\frac{2}{19}$
(dibics $\theta: \frac{5}{21}$
49. Let of $\vec{i} \cdot \vec{i}+\vec{b} . \vec{i}+\vec{i} . i \vec{i}$ is
a 47
b 25
c 50 d -25
50. The maximum value of $z=4 x+2 y$ subjected the constrains $2 x+3 y \leq 18, x+y \geq 10, x, y \geq 0$
a 20 b 36

C 40
d None of these

