GGSIPU mathmatics 2008

1. Let \vec{u} and \vec{b} be two equal vectors inclined at an angle θ , then a sin $\frac{\theta}{2}$ is equal to

a
$$\frac{|\vec{u}| - \vec{b}/|}{|\vec{z}|}$$
 b $\frac{|\vec{u}| - \vec{b}/|}{|\vec{z}|}$
c $|\vec{u}| - |\vec{b}|$ d $|\vec{u}| + |\vec{b}|$

2. $\int \frac{dx}{x^2+4x+13}$ is equal to

a ldc x ²+4x+13) +c
b
$$\frac{1}{3}$$
tan⁻¹ $\left(\frac{x+2}{3}\right)$ + c
c log2x2x+4) +
d $\frac{2x+4}{x^2+4x+13)^2}$ + c

3. The general solution $y^2 dx + x^2 - xy + y^2 dy = 0$ is

a tan
$$\frac{1}{y} \cdot \log y + c = 0$$

b $2\tan^{-1}\frac{x}{y} + \log c + c = 0$
c $\log y + \sqrt{x^2 + y^2} + \log y + c = 0$
(d) $\sinh^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$
4. $\int_0^{x/4} \cos x - \sin x dx + \int_{x/4}^{5\pi/4} \sin x - \cos x dx + \int_{2\pi}^{\pi/4} (\cos x - \sin x) dx$ is equal rto
a $\sqrt{2} \cdot 2$ b $2\sqrt{2} \cdot 2$
c $3\sqrt{2} \cdot 2$ d $4\sqrt{2} \cdot 2$

5. Out of 40 consecutive natural numbers ,two are chosen at random.Probability that the sum of the number is odd,is

a
$$\frac{14}{29}$$
 b $\frac{20}{39}$
c $\frac{1}{2}$ d None o othere

6. Equation of tengents to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, which are perpendicular to the line 3x+4y = 7, are

a 4x -3y =
$$\pm \sqrt{20}$$
 b 4x -3y = $\pm \sqrt{12}$
c 4x $\#3y = \pm \sqrt{1}$ d 4#4 -3y = ± 1

71. If \vec{a} is perpendicular to \vec{b} and \vec{c} , $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$ and the angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$, then $[\vec{a}\vec{b},\vec{c}]$ is equal to

a4√3 b6√3 c12√3 (d18√3

8. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ is

a
$$y = \frac{1}{4}e^{-2x} + \frac{cx}{2} + d$$

b $y = \frac{1}{4}e^{-2x} + cx + d$
c $y = \frac{1}{4}e^{-2x} + cx^{2} + d$
d |) $y = \frac{1}{4}e^{-2x} + cx^{3} + d$

9. The value of $\int_{2}^{3} \frac{x+1}{x^{2}(x-1)} dx$ is a log $\frac{16}{9} + \frac{1}{6}$ b log $\frac{16}{9} - \frac{1}{6}$ c $2 \log 2 - \frac{1}{6}$ d log $\frac{4}{3} - \frac{1}{6}$

10. The length of the chord of the parabola x^2 =4y passing through the vertex and having slope cot α is

a 4 cos
$$\alpha$$
 cosec² α b 4 tan α sec α
c 4 sin α sec² α d None of these

11. The records of a hospital show that 10% of the cases of a certain disease, then the probability that only three will die, is

12. From the point P16,7 tangents PQ and PR are drawn to the circle x $^{2}+y^{2}-2x-4y-20 = 0.$ If c be the centre of the circle, then area of quadrilateral PQCR is

c 50 sq unit d 75 sq unit 13. If tan x = $\frac{b}{a}$, then the value of a cos 2x + b sin 2x is a a b a -b

ca+b d b

14. In a triangle ABC, right angled at C, the value of cot A + cot B is

a
$$\frac{c^2}{ab}$$
 b $a = \frac{a}{a}$
c $\frac{a^2}{bc}$ d $\frac{b^2}{ac}$

16. If α , β are roots of the equation lx² + mx + n = 0,then the equation whose roots are $\alpha^3 \beta$ and $\alpha \beta^3$, is

a $I {}^{4}x^{2} - nIm {}^{2} - 2nIx + n {}^{4} = 0$ b $I {}^{4}x^{2} + nIm {}^{2} - 2nIx + n {}^{4} = 0$ c $I {}^{4}x^{2} + nIm {}^{2} - 2nIx - n^{4} = 0$ d $I {}^{4}x^{2} - nIm {}^{2} - 2nIx + n {}^{4} = 0$

17. The value of $2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \cdot 16^{1/32} \dots$

a 3/2 b 5/2 c 2 d 1

18. $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ [21-1] is equal to

a $\begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix}$ b $\begin{bmatrix} 2 & -1 & -1\\ -2 & -1 & 1\\ 4 & 2 & -2 \end{bmatrix}$ (c) [-1] d not defined 19. $\lim_{x \to \infty} \frac{(2x-3)(3x-4)}{(4x-5)(5x-6)}$ is equal to a $\frac{1}{10}$ b 00 c $\frac{1}{5}$ (c $\frac{3}{10}$ 20. Function f(x = $\begin{cases} x-1, & x<2\\ 2x-3, & x \ge 2 \end{cases}$ is a continuous function

- a for x = 2 only
- b for all real values of x such that $x \neq 2$
- c for all real values of x
- d for all integgral values of x only

21. Differential coefficient of $\sqrt{\sec\sqrt{x}}$ is

- a $\frac{1}{4\sqrt{x}} \sec \overline{x} \sin \overline{x}$ b $\frac{1}{4\sqrt{x}} (\sec \overline{x})^{3/2} . \sin \sqrt{x}$ c $\frac{1}{2} \overline{x} \sec \overline{x} \sin \overline{x}$ d $\frac{1}{2} \overline{x} \sec \overline{x}^{3/2} . \sin \overline{x}$
- **22.** The function x^5-5x^4+5x-1 is
 - a neither maximum nor minimum at x = 0
 - b maximum at x=0
 - c maximum at x=1 and minimum at x=3
 - (d)minimmn at x=0

23. If x= y $\sqrt{1-y^2}$, then $\frac{dy}{dx}$ is equal to a x x \therefore $\frac{\sqrt{1-y^2}}{1+2y^2}$ c $\frac{\sqrt{1-y^2}}{1-2y^2}$ d 0

24. If the planes x+2y+kz = 0 and 2x+y-2z = 0, are at the right angles, then the value of k is

a 2 b -2
c
$$\frac{1}{2}$$
 d $-\frac{1}{2}$

25. The ratio in which the line joining 2,4,5, 3,5, -4 is divided by the yz plane is

26. If the lines 3x+4y+1 = 0, $5x+\lambda y+3 = 0$ and 2x+y-1=0 are concurrent, then λ is equal to

27. The value of $\frac{1}{0} \frac{x^4+1}{x^2+1} dx$ is

a
$$\frac{1}{6}$$
 3 - 4 π b $\frac{1}{6}$ 3 π + 4
c $\frac{1}{6}$ 3 + 4 π d $\frac{1}{6}$ 3 π - 4

28. The solution of the differential equation

 $\frac{dy}{dx} = y \tan x - 2 \sin x, \text{is}$ a Y sin x = c+Sin 2x b Y cos x = c+ $\frac{1}{2}$ sin 2x c Y cos x = c-Sin 2x d Y cos x = c+ $\frac{1}{2}$ cos 2x l = (10g2)^2 (10g2)^3

29. The value of 1- log 2 + $\frac{\log 2^{2}}{2!} - \frac{(\log 2)^{3}}{3!} + \dots$ ls

a klg3 b log2

c
$$\frac{1}{2}$$
 d None of these

30. The maximum value of $f(x = \frac{x}{4+x+x^2}$ on [-1,1] is

a
$$\frac{1}{3}$$
 b $-\frac{1}{4}$
c $\frac{1}{5}$ d $\frac{1}{6}$

31. If the redius of a circle be increasing at auniform rate of 2 cm/s. The area of increasing of area of circle, at the instant when the redius is 20 cm, is

a 70
$$\pi$$
 cm²/s b 70 cm²/s
c 80 π cm²/s d 80 cm²/s

32. If PA = PB \Rightarrow and PA $(\cap B = PA' \cap B' = \frac{1}{3}$, then x is equal to

a $\frac{1}{2}$ b $\frac{1}{3}$ c $\frac{1}{4}$ d $\frac{1}{6}$ 33. The focus of the parabola y^2 -x-2y+2 = 0 is

a
$$(\frac{1}{4}, 0$$
 b 1, $(\frac{1}{4}, \frac{1}{4})$
c $\frac{5}{4}, 1$ d $\frac{3}{4}, \frac{5}{2}$

34. The equation of normal at the point 0,3 of the ellipse $9x^{2}+5y^{2} = 45$ is

a x -axis b y -axis c y+3=0 d y -3=0

35. The equation of the tengent parallel to y-x+5=0 drawn to $\frac{x^2}{3} - \frac{y^2}{2} = 1$ is

a x -y+1=0 b x -y+2=0 c_ x+y-1=0 d) ++y+2=0

36. Let the functions f,g,h are defined from the set of real numbers R to R such that $f(x = x^2 - 1)$, gx $= \sqrt{x^2 - 1}$ and hx = $\begin{cases}
0, & \text{if } x < 0 \\
x, & \text{if } x = 0
\end{cases}$

Then hofog x is defined by

37. The angle of elevation of the sum, If the length of the shadow of a tower is $\overline{3}$ times the height of the pole, is

a 150 ° b 30 ° c 60 ° d 45° 38. If sin A = n sin B, then $\frac{n-1}{n+1} \tan \frac{A+B}{2}$ is equal to a sin $\frac{A-B}{2}$ b tan $\frac{A-B}{2}$ c cot $\frac{A-B}{2}$ d None of these 39. 3 tan⁻¹ a is equal to

a tan
$$\frac{-1}{1+3a^2}$$

b
$$\tan^{-1} \frac{3a-a^3}{1+3a^2}$$

c $\tan^{-1} \frac{3a+a^3}{1-3a^2}$
d $\tan^{-1} \frac{3a-a^3}{1-3a^2}$

40. In which quadrant of the complex plane , the point $\frac{1+2l}{1-l}$ lies ?

a Fourth b Fir st c Second d Third

41. If sin α and cos α are the roots of the equation px²+qx+r = 0,then

a
$$p^{2}+q^{2}-2pr = 0$$

b $p^{2}-q^{2}+2pr = 0$
c $p^{2}-q^{2}-2pr = 0$
d $p^{2}+q^{2}+2pr = 0$

42. If a,b,c are in the GP,then the equations $ax^2+2bx+c = 0$ and $dx^2+2ex+f = 0$ have a common root, if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in

- a AP b GP
- c Hp d None of to ese

43. In the expension of $2x^2 - \frac{1}{x}^{12}$, the term independent of x is

a 8 th b 7 th c 9 th d 10 th

44. The general value of θ in the equation $\cos\theta = \frac{1}{\sqrt{2}}$, $\tan\theta = -1$ is

a 2n
$$\pi \pm \frac{\pi}{6}$$
, $n \in I$
b 2n $\pi \pm \frac{7\pi}{6}$, $n \in I$
c n $\pi \pm -1^n \frac{\pi}{3}$, $n \in I$
d n $\pi \pm -1^n \frac{\pi}{4}$, $n \in I$

45. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
, then A^{-1} is equal to

$$a \begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$$

$$b \begin{bmatrix} 5/11 & 2/11 \\ 3/11 & -1/11 \end{bmatrix}$$

$$c \begin{bmatrix} -5/11 & -2/11 \\ -3/11 & -1/11 \end{bmatrix}$$

$$d \begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}$$
46. The value of $\lim_{x \to \infty} \left(\frac{x^2 + bx + 4}{x^2 + ax + 5} \right)$ is

$$a \quad \frac{b}{a} \quad b \quad 0 \neq 0$$

$$c \quad : 1 \quad (d) \quad \frac{4}{5}$$

47. Let $f(x = \begin{cases} \frac{\sin \pi x}{5x} & x = 0\\ k, & x = 0 \end{cases}$ if f(x) is the continuous at x = 0, then k is equal to a $\frac{\pi}{5}$ b $\frac{5}{\pi}$ c 1 d 0

48. If θ be the angle between the vectors $\vec{i} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{j} = 6\hat{i} - 3\hat{j} + 2\hat{k}$, then

a $\cos \theta = \frac{4}{21}$ b $\cos \theta = \frac{3}{19}$ c $\cos \theta = \frac{2}{19}$ divins $\theta > \frac{5}{21}$

491 Let **and** *t* be vectors with magnitudes 3,4 and 5 respectively and *i*+*i*+*i* = *i*, then the values of *i*, *i*+*i*, *i*+*i*, *i*, *i* = *i*, then the values

a 47 b 25

c 50 d -25

50. The maximum value of z = 4x+2y subjected the constrains 2x+3y 18, x+y 10, x, y 0

- a 20 b 36
- c 40 d None of these